A proactive approach to managing safety for electrical medical devices

A proactive approach to managing safety for electrical medical devices feature image

In this article, we will take a look at how you can manage safety in a simple and effective way when developing electrical medical devices, while at the same time following the IEC 60601 standards. You will also learn why it is critical to identify specific requirements before you start development of your medical device.

In the short course below, I will show you what safety is, the general requirements for safety, and how to navigate and apply the standards.

Safety standards for electrical medical devices

All manufacturers of medical devices aim to ensure that their products are safe and effective. It is also a regulatory requirement for any market where you would sell your product.

Considering the diversity of medical devices, how they are used and the technologies they employ – this can be challenging. Therefore, standards have been developed to help manufacturers, test houses and regulators.

By knowing how the safety standards for electrical medical devices are structured, you can navigate the standards and identify the relevant requirements with greater ease.

All these standards in combination define what is called basic safety and essential performance for different types of medical devices.

Structure of the 60601 series

The general standard, relevant for safety for electrical medical devices is IEC 60601-1. This standard specifies general requirements for basic safety and essential performance. The general standard is an umbrella standard based on collateral standards and particular standards.

 

What is a collateral standard?

The collateral standards specify general requirements applicable to subgroups of devices as well as specific characteristics of devices not covered by the general standard.

IEC 60601-1 General safety standard

The topics of these standards include EMC, usability, alarms, environmental design, closed-loop controllers, home healthcare and EMS. In principle, each of these collateral standards apply in parallel with the general standard.

 

What is a particular standard?

In addition to the general standard and the collateral standards, there are also particular standards. Each of these apply to a very specific type of product. The particular standards may modify, replace or delete requirements contained in the general and the collateral standards.

Particular standards
As the scope is any medical device, this series of standards define requirements for a lot of hazards and risks. These include among others:
  • Electrical requirements such as insulation, leakage current and protective earth
  • Mechanical requirements including structural integrity, moving parts, patient support systems, noise and vibration
  • Radiation requirements which include X-ray, alpha, beta, gamma, neutron, microwave and light radiation
  • Temperature and other hazards such as heat, cold, fire, spillage, cleaning, ingress of water and particulate matter
Additional hazards can include:
  • Use-related requirements such as usability, home healthcare, alarms and hazardous outputs
  • Software requirements for the development process and risk management
  • Constructional requirements related to controls, indicators, serviceability, connectors, replacement of components and wiring
  • Functional requirements which are often defined in particular standards and in some of the collateral standards
You will have to identify and manage all these hazards, and other hazards relevant to your device through the risk management process. If you want to know more about risk management, take a look at our online course Introduction to Risk Management for Medical Devices and ISO 14971:2019. execution.

Basic safety and essential performance

The goal with all of these requirements is to ensure basic safety and essential performance, which basically means that the patient and other users should have freedom from unacceptable risk.

Definition of basic safety

Freedom from unacceptable risk is achieved through proactive risk management, requirement management and verification during all product development phases.

To establish that the device is safe, you need to manage all risks relevant for electrical medical devices.

Proactive management of requirements

Most manufacturers fail to address safety by design in a proactive manner in one specific aspect. In my experience, the most common problem manufacturers face is lack of proactive management of these requirements.

The safety standards define type tests – but if you wait to address them in detail, until you submit to the lab at the end of your product development project, you are sure to fail the test.

When to perform safety related activities

Typically, safety related activities are performed late in the design verification phase or even as late as the design validation phase. This results in failed tests, redesign and retesting – which adds to cost and delays.

To avoid costly delays, I recommend that you identify the few relevant requirements early, during the design phase and decide how the design will meet these requirements.

 

Proactive safety by design

The key to proactive safety by design is to start early and, based on the intended purpose and technologies, identify which standards, hazards and requirements are applicable to your device. Then document how the product is designed to be safe in the design notes.

It is critical to do this as a cross-functional team exercise, because it is the combination of electronic, mechanic and software solutions that must meet the requirements.

Identify the key features which are critical to the product, and then focus on these. Next, ask stakeholders for their input, this includes team members, management, and suppliers. Consult standards and guidelines to ensure that you understand all the aspects of the requirements.

Proactive safety by design is a cross-functional team exercise
When you have clarified what the key requirements are and analyzed the ways they can be managed; then and only then it is time to identify and document solutions. To make safety engineering easier, focus on clarification and analysis before execution.

Would you like to know more about safety for electrical devices?

If you want to know more about the 60601 standard and safety for electrical devices, take a look at our online course Introduction to Safety for Medical Devices and IEC 60601. This comprehensive course has in-depth information and quizzes to test your knowledge and understanding. At the end of the course you will also receive a course certificate, which many auditors will be looking for.

Our online courses are frequently taken by competent authorities, notified bodies and medical device manufacturers and distributors.

medical device hq instructors - Claus Rømer

Claus Rømer Andersen

Claus Rømer Andersen is an accomplished trainer, consultant and facilitator in the medical device industry. With a background in electrical engineering, he has worked with regulatory navigation, approval management, device testing throughout his whole career.

He is recognized as having a pragmatic and solution oriented approach to helping development teams focus on relevant issues throughout the entire product life-cycle.

Receive FREE templates and quarterly updates on upcoming courses that can help you in your career! Subscribe to our newsletter now.

When you submit this form, you will be sending personal information to medicaldevicehq.com. To comply with GDPR requirements, we need your consent to store and use the personal data you submit. Take a look at our Privacy policy for more details.

MedicalDeviceHQ Menu logo
Categories
Table of contents

Get in touch to receive proposal for customised training

When you submit this form, your personal data will be processed in accordance with our privacy policy.

New Process validation for medical devices course!

Special launch offer: 349 299 EUR for the online plan & 449 349 EUR for the online lifetime plan.